
Protocol 1: assessment of cell type replicability
with unsupervised MetaNeighbor
Protocol 1 demonstrates how to compute and visualize cluster replicability
across 4 human pancreas datasets. We will show steps detailing how to install
MetaNeighbor, how to compute and interpret MetaNeighbor AUROCs. All code
blocks can be run in a Jupyter notebook, python or ipython interpretor or in a
script run at the command line.

Step 0: Installation of MetaNeighbor and packages used in
the protocol

1. We start by installing the latest MetaNeighbor package from the Gillis lab
GitHub page if you have not done so already.

Uncomment the line in the cell below and run it, if you run into errors with the
installation, refer to the installation information in the README

#!pip install git+https://github.com/gillislab/pyMN#egg=pymn

1. Next we need to import other packages needed to run this analysis, all
of these are required by pyMN anyway so you should have them if it
successfully installs

import numpy as np
import pandas as pd
import scanpy as sc
import matplotlib.pyplot as plt
import seaborn as sns
import pymn

%matplotlib inline

1. Here we set up our plotting settings, these are our preferences

#These save characters as text in PDFs
import matplotlib
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42

#These change plot aesthetics

sns.set(style='white', font_scale=1.25)
plt.rc("axes.spines", top=False, right=False)
plt.rc('xtick', bottom=True)
plt.rc('ytick', left=True)

1

https://github.com/gillislab/pymn


Step 1: Downloading the Hemberg scRNAseq data
We consider 4 pancreatic datasets along with their independent annotation
(from the original publication). MetaNeighbor expects a gene x cell matrix
encapsulated in a anndata format. In Python we recommend using the anndata
object. It works well with the popular scRNAseq analysis package Scanpy. The
4 datasets are best acquired using the R package scRNAseq. In the equivalent
protocol using the R version of MetaNeighbor we outline how to acquire and
preprocess each individual dataset.

Merging the R SingleCellExperiment objects requires multiple steps shown in
the R version of the protocol. In comparison, merging Python anndata objects is
relatively straightforward, but if you have difficulties the anndata documentation
has a section dedicated to it. For the BICCN data used in Protocols 2 and 3,
when processing the data we merged 7 Anndata objects. To follow how the data
was processed you can refer to this R script and this Python script. Running the
R script requires installing the R version of MetaNeigbhor and the Bioconductor
package scRNAseq.

1. First we download the data using curl

!curl -L -o hemberg.h5ad https://ndownloader.figshare.com/files/24928574

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 97.2M 100 97.2M 0 0 12.7M 0 0:00:07 0:00:07 --:--:-- 14.4M

Step 2: Hierarchical cell type replicability analysis
1. We load the previously created pancreas dataset.

adata = sc.read_h5ad('hemberg.h5ad') #Temporary until hosted file

adata.obs.columns = adata.obs.columns.astype(str)

Here you can see that we have an AnnData object with 15,793 cells and 15,295
genes

It has two observation features: cell.type and study_id

adata

AnnData object with n_obs × n_vars = 15793 × 15295
obs: 'cell.type', 'study_id'

1. Study and Cell Type Data must be passed as a string or integer to
MetaNeigbhor fast version to improve computation times.

adata.obs['cell.type'] = adata.obs['cell.type'].astype(str)
adata.obs['study_id'] = adata.obs['study_id'].astype(str)

2

https://anndata.readthedocs.io/en/stable/concatenation.html
https://github.com/gillislab/pyMN/blob/master/data/hemberg.R
https://github.com/gillislab/pyMN/blob/master/data/hemberg.py
https://github.com/gillislab/MetaNeighbor
https://bioconductor.org/packages/3.12/scRNAseq


1. To perform neighbor voting, MetaNeighbor builds a cell-cell similarity
network, which we defined as the Spearman correlation over a user-defined
set of genes. We found that we obtained best results by picking genes
that are highly variable across datasets, which can be picked using the
"variableGenes" function.

NOTE: This is the one function that differs slightly from the R
version. The quantile function in R defaults to a behavoir that is
not native to any standard python packages, thus the variable gene
list is slightly different between the python and R versions. Overall
this does not appear to affect the results significantly. While the
AUROCs will not be identical they are extremely similar. In Section
1.4 there are a few differences in connectivity between individual
clusters, but the neighborhood structure of the cell-type graph is
consistent

pymn.variableGenes(adata, study_col='study_id')

/home/bharris/miniconda3/lib/python3.7/site-packages/anndata/_core/anndata.py:1094: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead
if not is_categorical(df_full[k]):

The function returns a list of 736 (600 in the R version) genes that were detected
as highly variable in each of the 4 datasets. By default the variableGenes
functions stores the highly variable genes under the highly_variable column
in .var of the passed AnnData object

1. The data and a set of biological meaningful genes is all we need to run
MetaNeighbor and obtain cluster similarities.

NOTE: Most functions do not return anything by default. Rather
they save the output of the function in the .uns part of the an-
ndata object. Additionally, by default the functions search for
input data from the .uns data. This functionality is highly cus-
tomizable, you can pass objects directly if you want and return
the results instead of saving them from the object. Additionally,
you can define your own keys to save results as instead of the de-
faults. EX: The output of the below MetaNeighborUS run is save in
adata.uns['MetaNeighborUS'] and the parameters uses are saved
under adata.uns['MetaNeighborUS_params']

pymn.MetaNeighborUS(adata,
study_col='study_id',
ct_col='cell.type',
fast_version=True)

Cluster similarities are defined as an Area Under the ROC curve (AUROC),
which range between 0 and 1, where 0 indicates low similarity and 1 high
similarity.

3



1. For ease of interpretation, we visualize AUROCs as a heatmap, where rows
and columns are cell types from all the datasets.

pymn.plotMetaNeighborUS(adata, figsize=(10, 10), cmap='coolwarm', fontsize=10)

/home/bharris/miniconda3/lib/python3.7/site-packages/seaborn/matrix.py:1215: UserWarning: ``square=True`` ignored in clustermap
warnings.warn(msg)

In the heatmap, the color of each square indicates the proximity of a pair of
cluster, ranging from blue (low similarity) to red (high similarity). For example,
"serger|gamma cell" (bottom row) is highly similar to "muraro|pp" (2nd column
from the right) but very dissimilar from "muraro|ductal" (middle column). To
group similar clusters together, "plotHeatmap" applies hierarchical clustering
on the AUROC matrix. On the heatmap, we see two red blocks that indicate
clear hierarchical structure in the data, with endocrine cell types clustering
together (e.g., alpha, beta, gamma) and mesenchymal cells on the other side
(e.g., amacrine, ductal, endothelial). Note that each red block is composed of

4



smaller red blocks, indicating that clusters can be matched at an even higher
resolution. We also see some off-diagonal patterns (e.g., lawlor|Gamma/PP,
lawlor|Delta), which generally indicate the presence of doublets or contamination
(presence of cells from other cell types), but what matters here is the clear
presence of red blocks, which is a strong indicator of replicability.

1. To identify pairs of replicable clusters, we rely on a simple heuristics: a pair
of cluster is replicable if they are reciprocal top hits (they preferentially
vote for each other) and the AUROC exceeds a given threshold value (in
our experience, 0.9 is a good heuristic value).

pymn.topHits(adata, threshold=0.9)

adata.uns['MetaNeighborUS_topHits']

Study_ID|Celltype_1 Study_ID|Celltype_2 Mean_AUROC \
0 seger|epsilon cell muraro|epsilon 1.00
1 baron|epsilon seger|epsilon cell 1.00
2 seger|PSC cell lawlor|Stellate 1.00
3 seger|endothelial cell muraro|endothelial 1.00
4 muraro|mesenchymal seger|PSC cell 1.00
5 seger|mast cell baron|mast 1.00
6 baron|activated_stellate seger|PSC cell 1.00
7 baron|endothelial muraro|endothelial 1.00
8 lawlor|Gamma/PP baron|gamma 1.00
9 lawlor|Acinar baron|acinar 1.00
10 lawlor|Alpha baron|alpha 1.00
11 seger|acinar cell lawlor|Acinar 1.00
12 seger|beta cell lawlor|Beta 0.99
13 seger|unclassified cell baron|schwann 0.99
14 seger|MHC class II cell baron|macrophage 0.99
15 baron|beta lawlor|Beta 0.99
16 muraro|acinar seger|acinar cell 0.99
17 seger|ductal cell lawlor|Ductal 0.99
18 baron|t_cell baron|mast 0.99
19 baron|ductal lawlor|Ductal 0.99
20 seger|gamma cell lawlor|Gamma/PP 0.99
21 muraro|beta lawlor|Beta 0.98
22 muraro|duct seger|ductal cell 0.98
23 seger|delta cell muraro|delta 0.98
24 muraro|alpha lawlor|Alpha 0.98
25 muraro|pp lawlor|Gamma/PP 0.98
26 baron|quiescent_stellate seger|PSC cell 0.98
27 seger|alpha cell muraro|alpha 0.98
28 baron|delta muraro|delta 0.97
29 seger|co-expression cell lawlor|Beta 0.95
30 muraro|unclear baron|ductal 0.93

5



31 lawlor|Delta baron|delta 0.92
32 lawlor|None/Other lawlor|Ductal 0.92
33 seger|nan muraro|nan 0.91

Match_type
0 Reciprocal_top_hit
1 Above_0.9
2 Reciprocal_top_hit
3 Reciprocal_top_hit
4 Above_0.9
5 Reciprocal_top_hit
6 Above_0.9
7 Above_0.9
8 Reciprocal_top_hit
9 Reciprocal_top_hit
10 Reciprocal_top_hit
11 Above_0.9
12 Reciprocal_top_hit
13 Reciprocal_top_hit
14 Reciprocal_top_hit
15 Above_0.9
16 Above_0.9
17 Reciprocal_top_hit
18 Above_0.9
19 Above_0.9
20 Above_0.9
21 Above_0.9
22 Above_0.9
23 Reciprocal_top_hit
24 Above_0.9
25 Above_0.9
26 Above_0.9
27 Above_0.9
28 Above_0.9
29 Above_0.9
30 Above_0.9
31 Above_0.9
32 Above_0.9
33 Reciprocal_top_hit

We find a long list of replicable endocrine cell types (e.g., epsilon, alpha and
beta cells) and non-endocrine cell types (e.g. mast, endothelial or acinar cells).
This list provides strong evidence that these cell types are robust, as they are
identified across all datasets with high AUROC.

1. In the case where there is a clear structure in the data (endocrine vs non-
endocrine here), we can refine AUROCs by splitting the data. AUROCs

6



have a simple interpretation: an AUROC of 0.6 indicates that cells from a
given cell type are ranked in front of 60% of other test cells. However, this
interpretation is outgroup dependent: because endocrine cells represent
~65% of cells, even an unrelated pair of non-endocrine cell types will have
an AUROC > 0.65, because non-endocrine cells will always be ranked in
front of endocrine cells.

By starting with the full datasets, we uncovered the global structure in the data
(endocrine vs non-endocrine). However, to evaluate replicability of endocrine
cell types and reduce dataset composition effects, we can make the assessment
more stringent by restricting the outgroup to close cell types, i.e. by keeping
only endocrine subtypes. We split cell types in two by using the splitClusters
function and retain only endocrine cell types.

level1_split = pymn.splitClusters(
adata, k=2,
save_uns=False) #Returning the splitClusters instead of saving them

level1_split

[array(['baron|acinar', 'baron|activated_stellate', 'baron|ductal',
'baron|endothelial', 'baron|macrophage', 'baron|mast',
'baron|quiescent_stellate', 'baron|schwann', 'baron|t_cell',
'lawlor|Acinar', 'lawlor|Ductal', 'lawlor|None/Other',
'lawlor|Stellate', 'muraro|acinar', 'muraro|duct',
'muraro|endothelial', 'muraro|mesenchymal', 'muraro|nan',
'muraro|unclear', 'seger|MHC class II cell', 'seger|PSC cell',
'seger|acinar cell', 'seger|ductal cell', 'seger|endothelial cell',
'seger|mast cell', 'seger|nan', 'seger|unclassified cell',
'seger|unclassified endocrine cell'], dtype=object),

array(['baron|alpha', 'baron|beta', 'baron|delta', 'baron|epsilon',
'baron|gamma', 'lawlor|Alpha', 'lawlor|Beta', 'lawlor|Delta',
'lawlor|Gamma/PP', 'muraro|alpha', 'muraro|beta', 'muraro|delta',
'muraro|epsilon', 'muraro|pp', 'seger|alpha cell',
'seger|beta cell', 'seger|co-expression cell', 'seger|delta cell',
'seger|epsilon cell', 'seger|gamma cell'], dtype=object)]

first_split = level1_split[1]

By outputting “level1_split”, we found that the cell types were nicely split
between non-endocrine and endocrine, and that endocrine cell types where in the
second element of the list. Note that splitClusters applies a simple hierarchical
clustering algorithm to separate cell types, cell types can be selected manually
in more complex scenarios.

1. We repeat the MetaNeighbor analysis on endocrine cells only. First, we
subset the data to the endocrine cell types (stored in "first_split").

to_keep = np.in1d(
pymn.join_labels(adata.obs['study_id'].values,

7



adata.obs['cell.type'].values), first_split)
subdata = adata[to_keep, :]
subdata.shape

/home/bharris/miniconda3/lib/python3.7/site-packages/anndata/_core/anndata.py:1094: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead
if not is_categorical(df_full[k]):

(9341, 15295)

The new dataset contains the 9341 putative endocrine cells.

1. To focus on variability that is specific to endocrine cells, we re-pick highly
variable genes:

pymn.variableGenes(subdata, study_col='study_id')

Trying to set attribute `.var` of view, copying.

1. Finally we recompute cluster similarities and visualize AUROCs.

res = pymn.MetaNeighborUS(subdata,
study_col='study_id',
ct_col='cell.type',
fast_version=True)

pymn.plotMetaNeighborUS(subdata,cmap='coolwarm')

/home/bharris/miniconda3/lib/python3.7/site-packages/seaborn/matrix.py:1215: UserWarning: ``square=True`` ignored in clustermap
warnings.warn(msg)

8



The resulting heatmap illustrates an example of a strong set of replicating cell
types: when the assessment becomes more stringent (restriction to closely related
cell types), the similarity of replicating cell types remains strong (AUROC~1 for
alpha, beta, gamma, delta and epsilon cells) while the cross-cell-type similarity
decreases (shift from red to blue, e.g. similarity of alpha and beta cell types has
shifted from orange/red in the global heatmap to dark blue in the endocrine
heatmap) by virtue of zooming in on a subpart of the dataset.

1. We can continue to zoom in as long as there are at least two cell types per
dataset:

level2_split = pymn.splitClusters(subdata, k=3, save_uns=False)
my_split = level2_split[2]
keep_cell = np.in1d(

pymn.join_labels(adata.obs['study_id'], adata.obs['cell.type']), my_split)
subdata = adata[keep_cell, ]
pymn.MetaNeighborUS(subdata,

study_col='study_id',

9



ct_col='cell.type',
fast_version=True)

/home/bharris/miniconda3/lib/python3.7/site-packages/anndata/_core/anndata.py:1094: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead
if not is_categorical(df_full[k]):

Trying to set attribute `.uns` of view, copying.

pymn.plotMetaNeighborUS(subdata, cmap='coolwarm')

/home/bharris/miniconda3/lib/python3.7/site-packages/seaborn/matrix.py:1215: UserWarning: ``square=True`` ignored in clustermap
warnings.warn(msg)

Here we removed the alpha and beta cells (representing close to 85% of endocrine
cells) and validate that, even when restricting to neighboring cell types, there is
still a clear distinction between delta, gamma and epsilon cells (AUROC ~ 1).

10



Step 3: stringent assessment of replicability with one-vs-
best AUROCs
In the previous section, we created progressively more stringent replicability
assessments by selecting more and more specific subsets of related cell types. As
an alternative, we provide the “one_vs_best” parameter, which offers similar
results without having to restrict the dataset manually. In this scoring mode,
MetaNeighbor will automatically identify the two closest matching cell types in
each test dataset and compute an AUROC based on the voting result for cells
from the closest match against cells from the second closest match. Essentially,
we are asking how easily a cell type can be distinguished from its closest neighbor.

1. To obtain one-vs-best AUROCs, we run the same command as before
with two additional parameters: "one_vs_best = TRUE" and "symmet-
ric_output = FALSE".

pymn.MetaNeighborUS(adata,
study_col='study_id',
ct_col='cell.type',
fast_version=True,
symmetric_output=False,
one_vs_best=True)

pymn.plotMetaNeighborUS(adata,
cmap='coolwarm',
figsize=(10, 10),
mn_key='MetaNeighborUS_1v1',
xticklabels=True,
yticklabels=True,
fontsize=7)

11



The interpretation of the heatmap is slightly different compared to one-vs-all
AUROCs. First, since we only compare the two closest cell types, most cell type
combinations are not tested (NAs, shown in white on the heatmap). Second, by
setting “symmetric_output=FALSE”, we broke the symmetry of the heatmap:
train cell types are shown as columns and test cell types are shown as rows.
Since each cell type is only tested against two cell types in each test dataset
(closest and second closest match), we have 8 values per column (2 per dataset).

This representation helps to rapidly identify a cell type’s closest hits as well
as their closest outgroup. For example, ductal cells (1st red square from the
top left) strongly match with each other (one-vs-best AUROC>0.8) and acinar
cells are their closest outgroup (blue segments in the same column). The non-
symmetric view makes it clear when best hits are not reciprocal. For example,
mast cells (5th square from the left) heavily vote for “lawlor|Stellate” and
“muraro|mesenchymal”, but this vote is not reciprocal. This pattern indicates
that the mast cell type is missing in the Lawlor and Muraro datasets: because

12



mast cells have no natural match in these datasets, they vote for the next closest
cell type (stellate cells). The lack of reciprocity in voting is an important tool to
detect imbalances in dataset composition.

17.When using one-vs-best AUROCs, we recommend extracting replicating cell
types as meta-clusters. Cell types are part of the same meta-cluster if they
are reciprocal best hits. Note that if cell type A is the reciprocal best hit of B
and C, all three cell types are part of the same meta-cluster, even if B and C
are not reciprocal best hits. To further filter for strongly replicating cell types,
we specify an AUROC threshold (in our experience, 0.7 is a strong one-vs-best
AUROC threshold).

pymn.extractMetaClusters(adata, threshold=.7)
pymn.score_meta_clusters(adata)
mcsummary = adata.uns['MetaNeighborUS_metacluster_scores']
mcsummary[mcsummary.index != 'outliers']

clusters n_studies \
metacluster_1 [muraro|acinar, lawlor|Acinar, seger|acinar ce... 4
metacluster_2 [baron|activated_stellate, muraro|mesenchymal,... 4
metacluster_3 [baron|alpha, muraro|alpha, seger|alpha cell, ... 4
metacluster_4 [lawlor|Beta, baron|beta, muraro|beta, seger|b... 4
metacluster_5 [seger|delta cell, lawlor|Delta, baron|delta, ... 4
metacluster_6 [lawlor|Ductal, seger|ductal cell, muraro|duct... 4
metacluster_7 [baron|endothelial, muraro|endothelial, seger|... 3
metacluster_8 [baron|epsilon, seger|epsilon cell, muraro|eps... 3
metacluster_9 [baron|gamma, lawlor|Gamma/PP, seger|gamma cel... 4
metacluster_10 [seger|MHC class II cell, baron|macrophage] 2
metacluster_11 [seger|mast cell, baron|mast] 2
metacluster_12 [baron|schwann, seger|unclassified cell] 2

score
metacluster_1 0.964499
metacluster_2 0.966342
metacluster_3 0.929227
metacluster_4 0.890479
metacluster_5 0.873855
metacluster_6 0.895828
metacluster_7 0.962885
metacluster_8 0.997211
metacluster_9 0.94572
metacluster_10 0.940192
metacluster_11 0.933844
metacluster_12 0.928088

The scoreMetaClusters provides a good summary of meta-clusters, ordering cell
types by the number of datasets in which they replicate, then by average AUROC.
We find 12 cell types that have strong support across at least 2 datasets, with 7

13



cell types replicating across all 4 datasets. 8 cell types are tagged as "outlier", as
they had no strong match. These cell types usually contain doublets, low quality
cells or contaminated cell types. The replicability structure described here can
be summarized as an Upset plot.

pymn.plotUpset(adata)

To further investigate the robustness of meta-clusters, they can be visualized as
heatmaps (called “cell-type badges”) with the plotMetaClusters function. Be-
cause the function generates one heatmap per meta-cluster, we save the output
to a PDF file to facilitate investigation. Each badge shows an AUROC heatmap
restricted to one specific meta-cluster. These badges help diagnose cases where
AUROCs are lower in a specific train or test dataset. For example, the “mu-
raro|duct” cell type has systematically lower AUROCs, suggesting the presence
of contaminating cells in another cell type (probably in the “muraro|unclear”
cell type).

Note This is not yet implemented

####### Not yet implemented #########

# pdf("meta_clusters.pdf")
# plotMetaClusters(mclusters, best_hits)

14



# dev.off()

1. The last visualization is an alternative representation of the AUROC
heatmap as a graph, which is particularly useful for large datasets. In
this graph, top votes (AUROC > 0.5) are shown in gray, while outgroup
votes (AUROC < 0.5) are shown in orange. To highlight close calls, we
recommend keeping only strong outgroup votes, here with AUROC >=
0.3.

pymn.makeClusterGraph(adata, low_threshold=.3)
pymn.plotClusterGraph(adata, font_size=9, figsize=(10, 10))

/home/bharris/pyMN/pymn/plotting.py:383: RuntimeWarning: invalid value encountered in greater
(best_hits.values < low_threshold)] = 0

/home/bharris/pyMN/pymn/plotting.py:383: RuntimeWarning: invalid value encountered in less
(best_hits.values < low_threshold)] = 0

We note that there are several orange edges, indicating that some cell types had

15



two close matches. To investigate the origin of these close calls, we can focus on
a cluster of interest (coi). Here we take a closer look at “baron|epsilon”, query
its closest neighbors in the graph with extendClusterSet, then zoom in on its
subgraph by passing the list of clusters to the plotClusterGraph function in order
to subset the graph and plot it.

coi = "baron|epsilon"
coi = pymn.extendClusterSet(adata=adata, coi=coi, max_neighbor_distance=2)
pymn.plotClusterGraph(adata, node_list=coi, font_size=10, figsize=(5, 5))

In the “baron|epsilon” case, we find that the epsilon cell type is missing in the
Lawlor dataset, so there is no natural match for the Baron epsilon cell type.
In such cases, votes are frequently non-reciprocal and equally split between
two unrelated cell types, here “Lawlor|Gamma/PP” and “Lawlor|Delta”. In
general, the cluster graph can be used to understand how meta-clusters are
extracted, why some clusters are tagged as outliers and diagnose problems where
the resolution of cell types differs across datasets.

16



17


	Protocol 1: assessment of cell type replicability with unsupervised MetaNeighbor
	Step 0: Installation of MetaNeighbor and packages used in the protocol
	Step 1: Downloading the Hemberg scRNAseq data
	Step 2: Hierarchical cell type replicability analysis
	Step 3: stringent assessment of replicability with one-vs-best AUROCs


