
from scipy.io import mmread
import numpy as np
import pandas as pd
import scanpy as sc
import matplotlib.pyplot as plt
import seaborn as sns
import pymn

%matplotlib inline

#These save characters as text in PDFs
import matplotlib
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42

#These change plot aesthetics

sns.set(style='white', font_scale=1.25)
plt.rc("axes.spines", top=False, right=False)
plt.rc('xtick', bottom=True)
plt.rc('ytick', left=True)

Protocol 3: Functional characterization of repli-
cating clusters
Protocol 3 demonstrates how to characterize functional gene sets contributing
to cell type identity. Once replicating cell types have been identified with
unsupervised MetaNeighbor (as in Protocols 1 and 2), supervised MetaNeighbor
enables the functional interpretation of the biology contributing to each cell
type’s identity. In this protocol, we will focus on the characterization of inhibitory
neuron subclasses from the mouse primary cortex as provided by the BICCN.
The BICCN has shown that subclasses are strongly replicable across datasets
and provided marker genes that are specific to each subclass. MetaNeighbor can
be used to further quantify which pathways contribute to the subclasses’ unique
biological properties.

Step 1 - Creation of biologically relevant gene sets
1. To compute the functional characterization of clusters, we first need an

ensemble of gene sets sampling relevant biological pathways. In this
protocol we will consider the Gene Ontology (GO) annotations for mouse.
The scripts used to build up-to-date gene sets can be found on Github,
gene sets can be downloaded directly on FigShare.

!curl -L -o go_mouse.mtx https://ndownloader.figshare.com/files/24928064
!curl -L -o go_mouse_row_labels.txt https://ndownloader.figshare.com/files/24928067
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!curl -L -o go_mouse_col_labels.txt https://ndownloader.figshare.com/files/24928061

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 20.9M 100 20.9M 0 0 7261k 0 0:00:02 0:00:02 --:--:-- 8582k

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 169k 100 169k 0 0 154k 0 0:00:01 0:00:01 --:--:-- 154k

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 1207k 100 1207k 0 0 969k 0 0:00:01 0:00:01 --:--:-- 4890k

go_mtx = mmread('go_mouse.mtx')
go_genes = np.genfromtxt('go_mouse_row_labels.txt', dtype=str)
go_barcodes = np.genfromtxt('go_mouse_col_labels.txt',

dtype=str,
delimiter='\n')

go_sets = pd.DataFrame(go_mtx.todense(), index=go_genes, columns=go_barcodes)

Gene sets are stored as a one-hot encoded pandas dataframe. The index is genes,
and columns are the GO terms, with 1s for when the gene is present in the set,
and 0 otherwise.

1. Then we load our dataset containing inhibitory neurons from the BICCN.
The scripts used to build the dataset can be found here, or downloaded
directly from Figshare

!curl -L -o biccn_gaba.h5ad https://ndownloader.figshare.com/files/24928643

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 550M 100 550M 0 0 6744k 0 0:01:23 0:01:23 --:--:-- 6988k

biccn_gaba = sc.read_h5ad('biccn_gaba.h5ad')

biccn_gaba.obs.columns = biccn_gaba.obs.columns.astype(str)

Observation names are not unique. To make them unique, call `.obs_names_make_unique`.

biccn_gaba.obs['study_id'] = biccn_gaba.obs['study_id'].astype(str)
biccn_gaba.obs['joint_subclass_label'] = biccn_gaba.obs['joint_subclass_label'].astype(str)

1. Next we restrict our gene sets to genes that are present in the dataset. We
then filter gene sets to keep gene sets of meaningful size: large enough
to learn expression profiles (> 10), small enough to represent specific
biological functions or processes (< 100).
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go_sets.shape

(24403, 22546)

known_genes = biccn_gaba.var_names
shared_genes = np.intersect1d(known_genes, go_sets.index)
go_sets = go_sets.loc[shared_genes]
min_size = 10
max_size = 100
set_sizes = go_sets.sum()
go_sets = go_sets.loc[:, (set_sizes > min_size) & (set_sizes < max_size)]

go_sets.shape

(20536, 6066)

Step 2: Functional characterization with supervised
MetaNeighbor

1. Once the gene set list is ready, we run the supervised MetaNeighbor function.
Its inputs are similar to MetaNeighborUS, but it assumes that cell types
have already been matched across datasets (i.e., they have identical names).
Here we use joint BICCN subclasses, for which names have been normalized
across datasets (“Pvalb”, “Sst”, “Sst Chodl”, “Vip”, “Lamp5”, “Sncg”).
Note that, because we are testing close to 6,500 gene sets, this step is
expected to take a long time for large datasets. We recommend using
this function inside a script and always save results to a file as soon as
computations are done.

PERFORMANCE NOTE 1 The pymn.MetaNeighbor function
has 2 boolean parameters that control the speed and memory
usage of the program. These parameters are fast_version and
fast_hi_mem. The slowest and highest memory configuration
is fast_version=False fast_hi_mem=True. The lowest memory
configuration is fast_version=True and fast_hi_mem=False. To
increase the speed and use a little bit more memory you can use
fast_version=True fast_hi_mem=True. For the example below
this requires about ~15GB of memory to run, but increases the
speed from the lowest memory version by about 60%.

PERFORMANCE NOTE 2 If you are running this on a com-
puter/server with many cores/threads you might lose performance if
you are using too many threads becasue of the overhead needed to
start threads. You can control the number of threads using import
mkl; mkl.set_num_threads(n_threads). For our servers we found
16 threads to be the ideal amount. You can test it by running a few
gene sets (10 or 100, go_sets.iloc[:,:100]) with different thread
counts to see what the fastest is before running all the gene sets
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import mkl; mkl.set_num_threads(16)

48

# pymn.MetaNeighbor(adata=biccn_gaba,
# study_col='study_id',
# ct_col='joint_subclass_label',
# genesets=go_sets,
# fast_version=True,
# fast_hi_mem=False)

# biccn_gaba.uns['MetaNeighbor'].to_csv('functional_aurocs.csv')

Later, results can be retrieved with the pd.read_csv function:

aurocs = pd.read_csv("functional_aurocs.csv", index_col=0)
biccn_gaba.uns['MetaNeighbor'] = aurocs
biccn_gaba.uns['MetaNeighbor_params'] = {'study_col':'study_id',

'ct_col':'joint_subclass_label'}

1. We use the "plotMetaNeighbor" function on the first 100 gene sets to
rapidly visualize how replicability depends on gene sets.

pymn.plotMetaNeighbor(aurocs.iloc[:,:100])
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If you pass the AnnData object with the results stored in .uns you can also color
by cell-type if you want it to match other data. You can save a colormap as a
dictionary of {celltype:color} under adata.uns['{ct_col}_colors_dict']
to be consistent with your other plots, or let the program generate one from a
given color palette under the palette parameter

pymn.plotMetaNeighbor(biccn_gaba, color='Cell Type')

In this representation, large the large dashed lines represent average gene set
performance and the small dashed lines represent the 25 and 75 percent quantiles.
We note that most gene sets contribute moderately to replicability (AUROC ~
0.7), numerous gene sets have a performance close to random (AUROC ~ 0.5 -
0.6) and some gene sets have exceedingly high performance (AUROC > 0.8).

1. To focus on gene sets that contribute highly to specificity, we create a
summary table containing, for each gene set, cell type specific AUROCs,
average AUROC across all cell types and gene set size.

gs_size = go_sets.sum()
aurocs.loc['average_auroc'] = aurocs.mean()
aurocs.loc['gs_size'] = gs_size[aurocs.columns]

We then order gene set by AUROC and look at top scoring gene sets:

aurocs.T.sort_values('average_auroc', ascending=False).head(10)
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Cell Type Lamp5 Pvalb \
GO:0007215|glutamate receptor signaling pathway|BP 0.967138 0.984908
GO:0051966|regulation of synaptic transmission,... 0.959517 0.971045
GO:0033555|multicellular organismal response to... 0.952360 0.975076
GO:0060076|excitatory synapse|CC 0.960445 0.966509
GO:0098839|postsynaptic density membrane|CC 0.924088 0.970252
GO:0099565|chemical synaptic transmission, post... 0.968255 0.977103
GO:0099601|regulation of neurotransmitter recep... 0.954515 0.974748
GO:0060079|excitatory postsynaptic potential|BP 0.966917 0.976322
GO:1900449|regulation of glutamate receptor sig... 0.953087 0.970946
GO:0010771|negative regulation of cell morphoge... 0.979016 0.974905

Cell Type Sncg Sst \
GO:0007215|glutamate receptor signaling pathway|BP 0.970894 0.979208
GO:0051966|regulation of synaptic transmission,... 0.975293 0.965359
GO:0033555|multicellular organismal response to... 0.974724 0.947405
GO:0060076|excitatory synapse|CC 0.988698 0.964131
GO:0098839|postsynaptic density membrane|CC 0.983317 0.983514
GO:0099565|chemical synaptic transmission, post... 0.972916 0.951548
GO:0099601|regulation of neurotransmitter recep... 0.954839 0.951108
GO:0060079|excitatory postsynaptic potential|BP 0.969234 0.950889
GO:1900449|regulation of glutamate receptor sig... 0.952778 0.950950
GO:0010771|negative regulation of cell morphoge... 0.970633 0.959184

Cell Type Sst Chodl Vip \
GO:0007215|glutamate receptor signaling pathway|BP 0.995992 0.986477
GO:0051966|regulation of synaptic transmission,... 0.992332 0.973365
GO:0033555|multicellular organismal response to... 0.999145 0.975227
GO:0060076|excitatory synapse|CC 0.986668 0.957072
GO:0098839|postsynaptic density membrane|CC 0.983329 0.970110
GO:0099565|chemical synaptic transmission, post... 0.987180 0.955344
GO:0099601|regulation of neurotransmitter recep... 0.993929 0.975712
GO:0060079|excitatory postsynaptic potential|BP 0.986148 0.953739
GO:1900449|regulation of glutamate receptor sig... 0.994219 0.972911
GO:0010771|negative regulation of cell morphoge... 0.986028 0.924774

Cell Type average_auroc gs_size
GO:0007215|glutamate receptor signaling pathway|BP 0.980770 92.0
GO:0051966|regulation of synaptic transmission,... 0.972819 75.0
GO:0033555|multicellular organismal response to... 0.970656 98.0
GO:0060076|excitatory synapse|CC 0.970587 75.0
GO:0098839|postsynaptic density membrane|CC 0.969101 93.0
GO:0099565|chemical synaptic transmission, post... 0.968724 91.0
GO:0099601|regulation of neurotransmitter recep... 0.967475 61.0
GO:0060079|excitatory postsynaptic potential|BP 0.967208 83.0
GO:1900449|regulation of glutamate receptor sig... 0.965815 56.0
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GO:0010771|negative regulation of cell morphoge... 0.965757 98.0

Without surprise, replicability is mainly driven by gene sets related to neuronal
functions that are immediately relevant to the physiology of inhibitory neurons,
such as “glutamate receptor signaling pathway”, “regulation of synaptic trans-
mission, glutamatergic”, or “chemical synaptic transmission, postsynaptic”. Note
that most of the top scoring gene sets have a large number of genes, as larger
sets of genes make it easier to learn generalizable expression profiles. To obtain
even more specific biological functions, we can further filter for gene sets that
have fewer than 20 genes.

small_sets = aurocs.T[aurocs.T['gs_size'] < 20]
small_sets.sort_values('average_auroc', ascending=False).head(10)

Cell Type Lamp5 Pvalb \
GO:0004970|ionotropic glutamate receptor activi... 0.900527 0.917350
GO:0035235|ionotropic glutamate receptor signal... 0.822718 0.821832
GO:0032230|positive regulation of synaptic tran... 0.844397 0.856076
GO:0007216|G protein-coupled glutamate receptor... 0.889939 0.848807
GO:1905874|regulation of postsynaptic density o... 0.829720 0.862467
GO:0099150|regulation of postsynaptic specializ... 0.833023 0.892884
GO:0150052|regulation of postsynapse assembly|BP 0.833023 0.892884
GO:0021889|olfactory bulb interneuron different... 0.807886 0.913701
GO:0070679|inositol 1,4,5 trisphosphate binding|MF 0.920570 0.940097
GO:1902711|GABA-A receptor complex|CC 0.820995 0.868930

Cell Type Sncg Sst \
GO:0004970|ionotropic glutamate receptor activi... 0.914096 0.957223
GO:0035235|ionotropic glutamate receptor signal... 0.905512 0.928740
GO:0032230|positive regulation of synaptic tran... 0.815510 0.920014
GO:0007216|G protein-coupled glutamate receptor... 0.763517 0.915839
GO:1905874|regulation of postsynaptic density o... 0.865795 0.903003
GO:0099150|regulation of postsynaptic specializ... 0.855117 0.909915
GO:0150052|regulation of postsynapse assembly|BP 0.855117 0.909915
GO:0021889|olfactory bulb interneuron different... 0.824044 0.883605
GO:0070679|inositol 1,4,5 trisphosphate binding|MF 0.790576 0.806067
GO:1902711|GABA-A receptor complex|CC 0.869553 0.801762

Cell Type Sst Chodl Vip \
GO:0004970|ionotropic glutamate receptor activi... 0.966349 0.922562
GO:0035235|ionotropic glutamate receptor signal... 0.942784 0.866258
GO:0032230|positive regulation of synaptic tran... 0.984549 0.829219
GO:0007216|G protein-coupled glutamate receptor... 0.951083 0.842163
GO:1905874|regulation of postsynaptic density o... 0.916684 0.825713
GO:0099150|regulation of postsynaptic specializ... 0.909895 0.801576
GO:0150052|regulation of postsynapse assembly|BP 0.909895 0.801576
GO:0021889|olfactory bulb interneuron different... 0.891491 0.864433
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GO:0070679|inositol 1,4,5 trisphosphate binding|MF 0.863020 0.852639
GO:1902711|GABA-A receptor complex|CC 0.990820 0.795980

Cell Type average_auroc gs_size
GO:0004970|ionotropic glutamate receptor activi... 0.929684 19.0
GO:0035235|ionotropic glutamate receptor signal... 0.881307 16.0
GO:0032230|positive regulation of synaptic tran... 0.874961 16.0
GO:0007216|G protein-coupled glutamate receptor... 0.868558 16.0
GO:1905874|regulation of postsynaptic density o... 0.867230 19.0
GO:0099150|regulation of postsynaptic specializ... 0.867068 18.0
GO:0150052|regulation of postsynapse assembly|BP 0.867068 18.0
GO:0021889|olfactory bulb interneuron different... 0.864193 15.0
GO:0070679|inositol 1,4,5 trisphosphate binding|MF 0.862161 15.0
GO:1902711|GABA-A receptor complex|CC 0.858007 19.0

Again, the top scoring gene sets are dominated by biological functions im-
mediately relevant to inhibitory neuron physiology, such as "ionotropic gluta-
mate receptor signaling pathway", "positive regulation of synaptic transmission,
GABAergic", or "GABA-A receptor complex".

1. To understand how individual genes contribute to gene set performance,
we use the "plotDotPlot" function, which shows the expression of all genes
in a gene set of interest, averaged over all datasets.

pymn.plotDotPlot(biccn_gaba,
go_sets["GO:0007215|glutamate receptor signaling pathway|BP"],
average_expressing_only=True,
fontsize=6,
figsize=(15, 9))

/home/bharris/miniconda3/lib/python3.7/site-packages/anndata/_core/anndata.py:1094: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead
if not is_categorical(df_full[k]):

/home/bharris/pyMN/pymn/plotting.py:127: RuntimeWarning: invalid value encountered in true_divide
axis=0) / np.nansum(M2, axis=1)
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pymn.plotDotPlot(biccn_gaba,
go_sets["GO:1902711|GABA-A receptor complex|CC"],
average_expressing_only=True)

/home/bharris/miniconda3/lib/python3.7/site-packages/anndata/_core/anndata.py:1094: FutureWarning: is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead
if not is_categorical(df_full[k]):

/home/bharris/pyMN/pymn/plotting.py:127: RuntimeWarning: invalid value encountered in true_divide
axis=0) / np.nansum(M2, axis=1)

High scoring gene sets are characterized by the differential usage of genes from a
given gene set. For example, when looking at the GABA-A receptor complex
composition, Lamp5 preferentially uses the Gabrb2 and Gabrg3 receptors, Pvalb
the Gabra1 receptor, and Sst Chodl the Gabra2, Gabrb1 and Gabrg1 receptors.
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