/* bam2bcf_iaux.c -- modified indel caller Copyright (C) 2022 Genome Research Ltd. Author: pd3@sanger, jkb Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE */ #include #include #include #include #include #include #include #include "bcftools.h" #include "bam2bcf.h" #include "read_consensus.h" #include "cigar_state.h" #include KSORT_INIT_STATIC_GENERIC(uint32_t) #ifndef DEBUG_ALN #define DEBUG_ALN 0 #endif #define MAX_TYPES 64 typedef struct { int pos; // current position char *chr; // current chromosome int nsmpl; // number of samples int *nplp; // per-sample number of reads bam_pileup1_t **plp; // per-sample reads bcf_callaux_t *bca; // auxiliary bam2bcf structure const char *ref; // reference genome (ASCII) uint32_t *uitmp; // temporary unsigned int array char *inscns; // insertions consensus "ACGTN"[itype*max_ins_len+i] int muitmp, minscns; // size of uitmp, inscns int iref_type, ntypes, types[MAX_TYPES]; // indel types int max_ins_len; // largest insertion int left, right; // consensus sequence boundaries, 0-based fa ref coordinates read_cns_t *rcns; // read consensus cns_seq_t *cns_seq; // array of consensus sequences int *cns_pos; // array of relative pos indexes within cns_seq sequences uint8_t *ref_seq, *qry_seq; // reference and query sequence to align int nref_seq, nqry_seq; // the allocated size of ref_seq and qry_seq uint8_t *qual; int nqual; int *read_scores, // read scores for each indel type [ntypes*iread+itype] mread_scores, ref_qual[MAX_TYPES], // refseq quality at pos for each indel type in the context of homopolymer runs sum_qual[MAX_TYPES]; // qual contributions to each indel type from all reads } indel_aux_t; #if DEBUG_ALN static void debug_print_types(indel_aux_t *iaux) { int i,j; fprintf(stderr,"types at %s:%d ntypes=%d... ",iaux->chr,iaux->pos+1,iaux->ntypes); for (i=0; intypes; i++) { fprintf(stderr," type%d=",i); if ( iaux->types[i]<=0 ) { if ( i==iaux->iref_type ) fprintf(stderr,"%d(ref)",iaux->types[i]); else fprintf(stderr,"%d",iaux->types[i]); continue; } char *cns = &iaux->inscns[i*iaux->max_ins_len]; for (j=0; jtypes[i]; j++) fprintf(stderr,"%c","ACGTN"[(int)cns[j]]); } fprintf(stderr,"\n"); } #else #define debug_print_types(iaux) #endif void bcf_iaux_destroy(bcf_callaux_t *bca) { if ( !bca->iaux ) return; indel_aux_t *iaux = (indel_aux_t*)bca->iaux; free(iaux->uitmp); free(iaux->inscns); free(iaux->ref_seq); free(iaux->qry_seq); free(iaux->qual); free(iaux->read_scores); rcns_destroy(iaux->rcns); free(iaux); } static void iaux_init_sequence_context(indel_aux_t *iaux) { // Calculate left and right boundary. The array types is sorted in ascending order, the first // element is the largest deletion (if a deletion present) iaux->left = iaux->pos > iaux->bca->indel_win_size ? iaux->pos - iaux->bca->indel_win_size : 0; iaux->right = iaux->pos + iaux->bca->indel_win_size; if ( iaux->types[0] < 0 ) iaux->right -= iaux->types[0]; // extend by the largest deletion length // In case the alignments stand out the reference int i; for (i=iaux->pos; iright; i++) if ( !iaux->ref[i] ) break; iaux->right = i; // Sequence quality in the context of homopolymers for each indel type int l_run = bcf_cgp_l_run(iaux->ref, iaux->pos); // The length of the homopolymer run around the current position for (i=0; intypes; i++) { int l = iaux->types[i]; // This is the original est_seqQ() code. FIXME: check if the inserted sequence is consistent with the homopolymer run int q = iaux->bca->openQ + iaux->bca->extQ * (abs(l) - 1); int qh = l_run >= 3? (int)(iaux->bca->tandemQ * (double)abs(l) / l_run + .499) : 1000; if ( q > qh ) q = qh; iaux->ref_qual[i] = q < 255 ? q : 255; } // Determine the indel region, this makes the difference between e.g. T>TA vs TA>TAA iaux->bca->indelreg = 0; for (i=0; intypes; i++) { if ( !iaux->types[i] ) continue; int ireg; if ( iaux->types[i] > 0 ) ireg = est_indelreg(iaux->pos, iaux->ref, iaux->types[i], &iaux->inscns[i*iaux->max_ins_len]); else ireg = est_indelreg(iaux->pos, iaux->ref, -iaux->types[i], 0); if ( ireg > iaux->bca->indelreg ) iaux->bca->indelreg = ireg; } } static int iaux_init_scores(indel_aux_t *iaux, int ismpl) { int n = iaux->nplp[ismpl] * iaux->ntypes; if ( iaux->mread_scores < n ) { int *tmp = (int*) realloc(iaux->read_scores,n*sizeof(int)); if ( !tmp ) return -1; iaux->mread_scores = n; iaux->read_scores = tmp; } memset(iaux->read_scores,0,n); return 0; } static int _have_indel_reads(indel_aux_t *iaux) { int i,j; for (i=0; insmpl; i++) { for (j=0; jnplp[i]; j++) if ( iaux->plp[i][j].indel ) return 1; } return 0; } // For insertions only their sizes were collected so far. Now go through the reads and // create consensus sequence for each insert, therefore note that there can be only one // sequence per insertion length static int iaux_init_ins_types(indel_aux_t *iaux) { if ( !iaux->max_ins_len ) return 0; uint32_t *aux; int naux = 5 * iaux->ntypes * iaux->max_ins_len; if ( iaux->muitmp < naux ) { aux = (uint32_t*) realloc(iaux->uitmp,naux*sizeof(*aux)); if ( !aux ) return -1; iaux->uitmp = aux; iaux->muitmp = naux; } else aux = iaux->uitmp; memset(aux,0,naux*sizeof(*aux)); // count the number of occurrences of each base at each position for each type of insertion int t,s,i,j; for (t=0; tntypes; t++) { if ( iaux->types[t] <= 0) continue; for (s=0; snsmpl; s++) { for (i=0; inplp[s]; i++) { bam_pileup1_t *plp = iaux->plp[s] + i; if ( plp->indel != iaux->types[t] ) continue; uint8_t *seq = bam_get_seq(plp->b); for (j=0; jindel; j++) { int c = seq_nt16_int[bam_seqi(seq, plp->qpos+j+1)]; assert(c<5); aux[5*(t*iaux->max_ins_len+j) + c]++; } } } } char *cns; int ncns = iaux->ntypes * iaux->max_ins_len; if ( iaux->minscns < ncns ) { cns = (char*) realloc(iaux->inscns,naux*sizeof(*aux)); if ( !cns ) return -1; iaux->inscns = cns; iaux->minscns = ncns; } else cns = iaux->inscns; memset(aux,0,ncns*sizeof(*cns)); // use the majority rule to construct the consensus for (t=0; tntypes; t++) { for (i=0; itypes[t]; i++) // this naturally includes only insertions { uint32_t *tmp = &aux[5*(t*iaux->max_ins_len+i)], max = tmp[0], max_j = 0; for (j=1; j<5; j++) if ( max < tmp[j] ) max = tmp[j], max_j = j; cns[t*iaux->max_ins_len + i] = max ? max_j : 4; if ( max_j==4 ) { iaux->types[t] = 0; break; } // discard insertions which contain N's } } return 0; } #define MINUS_CONST 0x10000000 static int iaux_init_types(indel_aux_t *iaux) { if ( !_have_indel_reads(iaux) ) return 0; iaux->bca->max_support = 0; memset(iaux->sum_qual,0,MAX_TYPES*sizeof(*iaux->sum_qual)); int i,j, nreads = 0; for (i=0; insmpl; i++) nreads += iaux->nplp[i]; uint32_t *aux; if ( iaux->muitmp < nreads+1 ) { aux = (uint32_t*) realloc(iaux->uitmp,(nreads+1)*sizeof(*iaux->uitmp)); if ( !aux ) return -1; iaux->uitmp = aux; iaux->muitmp = nreads+1; } else aux = iaux->uitmp; memset(aux,0,(nreads+1)*sizeof(*aux)); int naux = 0, indel_support_ok = 0, n_alt = 0, n_tot = 0; int max_rd_len = 0; // max sequence length that includes ref+del bases // Fill out aux[] array with all the non-zero indel sizes. This is an unsorted list with as many // entries as there are reads aux[naux++] = MINUS_CONST; // zero indel is always a type (REF) for (i=0; insmpl; i++) { int nalt = naux, ntot = 0; // per sample values for (j=0; jnplp[i]; j++) { const bam_pileup1_t *plp = iaux->plp[i] + j; ntot++; if ( plp->indel ) aux[naux++] = MINUS_CONST + plp->indel; if ( !PLP_QLEN(&plp->cd) ) PLP_QLEN(&plp->cd) = bam_cigar2qlen(plp->b->core.n_cigar, bam_get_cigar(plp->b)); if ( PLP_QLEN(&plp->cd) > max_rd_len ) max_rd_len = PLP_QLEN(&plp->cd); } nalt = naux - nalt; if ( iaux->bca->per_sample_flt ) { double frac = (double)nalt/naux; if ( nalt >= iaux->bca->min_support && frac >= iaux->bca->min_frac ) indel_support_ok = 1; if ( nalt > iaux->bca->max_support && frac > 0 ) iaux->bca->max_support = nalt, iaux->bca->max_frac = frac; } else { n_alt += nalt; n_tot += ntot; } } // Check if the minimum required number of indel reads has been observed if ( !iaux->bca->per_sample_flt && n_alt >= iaux->bca->min_support && (double)n_alt/n_tot >= iaux->bca->min_frac ) indel_support_ok = 1; if ( naux==1 || !indel_support_ok ) return 0; // To prevent long stretches of N's to be mistaken for indels (sometimes thousands of bases), check the number of N's in the // sequence and skip places where half or more reference bases in the sequence that follows pos are Ns int nN = 0, i_end = iaux->pos + (iaux->bca->indel_win_size < max_rd_len ? iaux->bca->indel_win_size : max_rd_len); for (i=iaux->pos; iref[i]; i++) if ( iaux->ref[i] == 'N' ) nN++; if ( 2*nN > i - iaux->pos ) return -1; // Sort aux[] and dedup indel types int n_types = 1; ks_introsort(uint32_t, naux, aux); for (i=1; i= MAX_TYPES ) { static int warned = 0; if ( !warned ) { fprintf(stderr, "Warning: excessive number of INDEL alleles at %s:%d, skipping. (This warning is printed only once)\n",iaux->chr,iaux->pos+1); warned = 1; } return -1; } // Fill out the types[] array detailing the size of insertion or deletion. iaux->ntypes = 0; iaux->max_ins_len = 0; for (i=0; iiref_type = iaux->ntypes; } else { if ( j-i >= iaux->bca->min_support ) is_ok = 1; // What is the best way to handle the -pmF options: // - consider only sites where a single indel type passes the -mF threshold, as opposed to all indel types cumulatively // - once a site passes, include all indel types in the evaluation, as opposed to considering only the strong candidates // In this implementation sites are selected by counting reads from all indel types cumulatively and all indel types // are considered. // Uncomment the following condition to consider only strong indel candidates once the site has been selected // if ( !iaux->bca->per_sample_flt && (double)(j-i) / n_tot < iaux->bca->min_frac ) is_ok = 0; } if ( is_ok ) { iaux->types[iaux->ntypes++] = isize; if ( isize > 0 && isize > iaux->max_ins_len ) iaux->max_ins_len = isize; } i = j-1; } if ( iaux->ntypes <= 1 ) return 0; // Init insertion types, including their sequence if ( iaux_init_ins_types(iaux) < 0 ) return -1; iaux_init_sequence_context(iaux); return iaux->ntypes; } #undef MINUS_CONST static int iaux_set_consensus(indel_aux_t *iaux, int ismpl) { if ( !iaux->rcns ) iaux->rcns = rcns_init(iaux->pos, iaux->left, iaux->right); else rcns_reset(iaux->rcns, iaux->pos, iaux->left, iaux->right); rcns_set_reads(iaux->rcns, iaux->plp[ismpl], iaux->nplp[ismpl]); iaux->cns_seq = rcns_get_consensus(iaux->rcns, iaux->ref + iaux->left); // todo: // rcns should also collect localized number of mismatches as a substitute // for uninformative MQ. This would not affect calling but would help with // filtering return 0; } #if 0 // Finds the smallest index in the seq_pos array holding value equal to pos, or if there is no // such value, the largest index with value smaller than pos. Starts at initial guess ioff. // This could use a binary search but the assumption is that the initial guess is indel-size close // to the actuall coordinate. // // TODO: remove this function and seq_pos from cns creation as it seems unnecessary static int find_ref_offset(hts_pos_t pos, hts_pos_t *seq_pos, int nseq_pos, int ioff) { if ( ioff<0 ) ioff = 0; else if ( ioff >= nseq_pos ) ioff = nseq_pos - 1; if ( seq_pos[ioff] < pos ) { while ( ioff+1 < nseq_pos && seq_pos[ioff] < pos ) ioff++; if ( seq_pos[ioff] > pos ) ioff--; return ioff; } while ( ioff > 0 && seq_pos[ioff-1] >= pos ) ioff--; return ioff; } #endif static int iaux_align_read(indel_aux_t *iaux, bam1_t *bam, uint8_t *ref_seq, int nref_seq) { if ( bam->core.flag & BAM_FUNMAP ) return 1; // skip unmapped reads // Trim both ref and qry to the window of interest hts_pos_t ref_beg = iaux->left; // fa ref coordinates hts_pos_t ref_end = iaux->right < ref_beg + nref_seq ? iaux->right : ref_beg + nref_seq - 1; cigar_state_t cigar; cstate_init(&cigar,bam); int qry_off1, qry_off2, ref_off1, ref_off2; if ( ref_beg > bam->core.pos ) { // the read needs trimming from left qry_off1 = cstate_seek_fwd(&cigar, &ref_beg, 1); ref_off1 = ref_beg - iaux->left; if ( ref_beg + (bam->core.l_qseq - qry_off1) > ref_end ) { // the read needs trimming from right qry_off2 = ref_end - ref_beg + qry_off1; ref_off2 = ref_end - iaux->left; } else { // the ref template needs trimming from right qry_off2 = bam->core.l_qseq - 1; ref_off2 = ref_off1 + qry_off2 - qry_off1; } } else { // the ref template needs trimming from left qry_off1 = 0; ref_off1 = bam->core.pos - ref_beg; if ( bam->core.pos + bam->core.l_qseq - 1 > ref_end ) { // the read needs trimming from right ref_off2 = ref_end - iaux->left; qry_off2 = ref_off2 - ref_off1; } else { // the ref template needs trimming from right qry_off2 = bam->core.l_qseq - 1; ref_off2 = ref_off1 + qry_off2 - qry_off1; } } //fprintf(stderr,"xtrim: %s .. left,right=%d,%d rbeg,end=%d,%d qpos=%d qlen=%d qoff=%d,%d roff=%d,%d rlen=%d\n",bam_get_qname(bam),iaux->left,iaux->right,(int)ref_beg,(int)ref_end,(int)bam->core.pos,bam->core.l_qseq, qry_off1,qry_off2,ref_off1,ref_off2,nref_seq); assert( qry_off1<=qry_off2 ); assert( qry_off1>=0 && qry_off1core.l_qseq ); assert( qry_off2>=0 && qry_off2core.l_qseq ); assert( ref_off1<=ref_off2 ); assert( ref_off1>=0 && ref_off1=0 && ref_off2nqry_seq < qlen ) { uint8_t *tmp = (uint8_t*) realloc(iaux->qry_seq, qlen); if ( !tmp ) return -1; // critical error iaux->qry_seq = tmp; iaux->nqry_seq = qlen; } uint8_t *seq = bam_get_seq(bam); for (i=qry_off1; i<=qry_off2; i++) iaux->qry_seq[i-qry_off1] = seq_nt16_int[bam_seqi(seq,i)]; // prepare qualities, either BQ or BAQ qualities (ZQ) if ( iaux->nqual < qlen ) { uint8_t *tmp = (uint8_t*) realloc(iaux->qual, qlen); if ( !tmp ) return -1; // critical error iaux->qual = tmp; iaux->nqual = qlen; } uint8_t *qual = iaux->qual; const uint8_t *qq = bam_get_qual(bam); const uint8_t *bq = (uint8_t*)bam_aux_get(bam, "ZQ"); if ( bq ) bq++; // skip type for (i=qry_off1; i<=qry_off2; i++) { int j = i - qry_off1; qual[j] = bq ? qq[i] + (bq[i] - 64) : qq[i]; if ( qual[j] > 30 ) qual[j] = 30; if ( qual[j] < 7 ) qual[j] = 7; } // Illumina probaln_par_t apf = { 1e-4, 1e-2, 10 }; // align int score = probaln_glocal(ref_seq + ref_off1, rlen, iaux->qry_seq, qlen, qual, &apf, 0, 0); int adj_score = (int)(100. * score / qlen + .499) * iaux->bca->indel_bias; #if DEBUG_ALN fprintf(stderr,"aln: %d/%d\t%s\n\tref: ",score,adj_score,bam_get_qname(bam)); for (i=0; iqry_seq[i]]); fprintf(stderr,"\n\tqual: "); for (i=0; i 255 ) adj_score = 255; return score<<8 | adj_score; } // Score all reads for this sample and indel type using the up to two consensus sequence templates. // On output sets iaux->read_scores[iread*ntypes+itype] = (raw_score<<8 | length_adjusted_score) static int iaux_score_reads(indel_aux_t *iaux, int ismpl, int itype) { int i; cns_seq_t *cns = iaux->cns_seq; while ( cns->nseq ) { // Resize buffers if necessary int ref_len = cns->nseq + iaux->types[itype]; if ( iaux->nref_seq < ref_len ) { uint8_t *ref_buf = (uint8_t*) realloc(iaux->ref_seq,sizeof(uint8_t)*ref_len); if ( !ref_buf ) return -1; iaux->ref_seq = ref_buf; iaux->nref_seq = ref_len; } // Apply the indel and create the template ref sequence... memcpy(iaux->ref_seq,cns->seq,(cns->ipos+1)*sizeof(*iaux->ref_seq)); if ( iaux->types[itype] < 0 ) // deletion memcpy(iaux->ref_seq + cns->ipos + 1, cns->seq + cns->ipos + 1 - iaux->types[itype], (cns->nseq - cns->ipos - 1 + iaux->types[itype])*sizeof(*iaux->ref_seq)); else { char *ins = &iaux->inscns[itype*iaux->max_ins_len]; for (i=0; itypes[itype]; i++) iaux->ref_seq[cns->ipos+1+i] = ins[i]; memcpy(iaux->ref_seq + cns->ipos + 1 + iaux->types[itype], cns->seq + 1 + cns->ipos, (cns->nseq - cns->ipos - 1)*sizeof(*iaux->ref_seq)); } #if DEBUG_ALN fprintf(stderr,"template %d, type %d, sample %d: ",cns==iaux->cns_seq?0:1,itype,ismpl); for (i=0; iref_seq[i]]); fprintf(stderr,"\n"); #endif // Align and score reads for (i=0; inplp[ismpl]; i++) { const bam_pileup1_t *plp = iaux->plp[ismpl] + i; int aln_score = iaux_align_read(iaux, plp->b, iaux->ref_seq, ref_len); int *score = &iaux->read_scores[i*iaux->ntypes+itype]; if ( cns==iaux->cns_seq || *score > aln_score ) *score = aln_score; } cns++; } return 0; } // Determines indel quality for each read and populates 22 bits of pileup aux field with // three integers as follows // plp->aux = indel_type << 16 | seqQ << 8 | indelQ static int iaux_eval_scored_reads(indel_aux_t *iaux, int ismpl) { int i,j; for (i=0; inplp[ismpl]; i++) { bam_pileup1_t *plp = iaux->plp[ismpl] + i; // Find the best indel type and the ref type, their scores difference is the indel quality int *score = &iaux->read_scores[i*iaux->ntypes]; int alt_score = INT_MAX, alt_j = 0; for (j=0; jiref_type; j++) if ( alt_score > score[j] ) alt_score = score[j], alt_j = j; for (j=iaux->iref_type+1; jntypes; j++) if ( alt_score > score[j] ) alt_score = score[j], alt_j = j; int ref_score = score[iaux->iref_type]; int sc0, sc1, j0; if ( alt_score < ref_score ) sc0 = alt_score, sc1 = ref_score, j0 = alt_j; else sc0 = ref_score, sc1 = alt_score, j0 = iaux->iref_type; int indelQ = (sc1>>8) - (sc0>>8); // low=bad, high=good int seqQ = iaux->ref_qual[alt_j]; // Reduce indelQ. High length-normalized alignment scores (i.e. bad alignments) // lower the quality more (e.g. gnuplot> plot [0:111] (1-x/111.)*255) int len_normQ = sc0 & 0xff; // length-normalized score of the best match (ref or alt) int adj_indelQ; // final indelQ used in calling if ( len_normQ > 111 ) { // In the original code reads matching badly to any indel type or reference had indelQ set to 0 // here and thus would be effectively removed from calling. This leads to problems when there are // many soft clipped reads and a few good matching indel reads (see noisy-softclips.bam in // mpileup-tests). Only the few good quality indel reads would become visible to the caller and // the indel would be called with high quality. Here we change the logic to make the badly matching // reads low quality reference reads. The threshold was set to make the test case still be called // as an indel, but with very low quality. // // Original code: // adj_indelQ = 0; // adj_indelQ = 12; j0 = iaux->iref_type; } else adj_indelQ = (int)((1. - len_normQ/111.) * indelQ + .499); #if DEBUG_ALN // Prints the selected indel type (itype); adjusted indelQ which will be used if bigger than seqQ; // raw indelQ; length-normalized indelQ and sequence context quality; ref and best alt indel type // and their raw and length-normalized scores fprintf(stderr,"itype=%d adj_indelQ=%d\trawQ=%d\tlen_normQ=%d\tseqQ=%d\tref:%d=%d/%d alt:%d=%d/%d)\t%s\n", j0,adj_indelQ,indelQ,len_normQ,seqQ,iaux->iref_type,ref_score>>8,ref_score&0xff,alt_j,alt_score>>8,alt_score&0xff,bam_get_qname(plp->b)); #endif if ( adj_indelQ > seqQ ) adj_indelQ = seqQ; // seqQ already capped at 255 plp->aux = j0<<16 | seqQ<<8 | adj_indelQ; // use 22 bits in total iaux->sum_qual[j0] += adj_indelQ; } return 0; } // Find the best indel types, include the ref type plus maximum three alternate indel alleles. static int iaux_eval_best_indels(indel_aux_t *iaux) { bcf_callaux_t *bca = iaux->bca; bca->maxins = iaux->max_ins_len; bca->inscns = (char*) realloc(bca->inscns, bca->maxins * 4); if ( bca->maxins && !bca->inscns ) return -1; // insertion sort, descending, high-quality indels come first int i,j,t, tmp, *sumq = iaux->sum_qual, ntypes = iaux->ntypes; for (t=0; t0 && sumq[j] > sumq[j-1]; j--) tmp = sumq[j], sumq[j] = sumq[j-1], sumq[j-1] = tmp; for (t=0; tiref_type ) break; if ( t ) { // move the reference type to the first tmp = sumq[t]; for (; t>0; t--) sumq[t] = sumq[t-1]; sumq[0] = tmp; } // Initialize bca's structures and create a mapping between old and new types int old2new_type[MAX_TYPES]; for (t=0; tntypes; t++) { int itype = sumq[t] & 0x3f; old2new_type[itype] = t; if ( t>=4 ) continue; bca->indel_types[t] = iaux->types[itype]; if ( bca->indel_types[t] <= 0 ) continue; memcpy(&bca->inscns[t*bca->maxins], &iaux->inscns[itype*iaux->max_ins_len], bca->maxins); } // Update indel type in plp->aux for all reads int ismpl, n_alt = 0; for (ismpl=0; ismplnsmpl; ismpl++) { for (i=0; inplp[ismpl]; i++) { bam_pileup1_t *plp = iaux->plp[ismpl] + i; int itype_old = (plp->aux >> 16) & 0x3f; int itype_new = old2new_type[itype_old]; plp->aux = itype_new<<16 | (itype_new>=4 ? 0 : (plp->aux & 0xffff)); if ( itype_new>0 ) n_alt++; } } return n_alt; } /* notes: - n .. number of samples - the routine sets bam_pileup1_t.aux (27 bits) of each read as follows: - 5: unused - 6: the call; index to bcf_callaux_t.indel_types .. (aux>>16)&0x3f - 8: estimated sequence quality .. (aux>>8)&0xff - 8: indel quality .. aux&0xff */ int bcf_iaux_gap_prep(int n, int *n_plp, bam_pileup1_t **plp, int pos, bcf_callaux_t *bca, const char *ref) { assert(!(ref == 0 || bca == 0)); // can this ever happen? when? if (ref == 0 || bca == 0) return -1; if ( !bca->iaux ) bca->iaux = calloc(1,sizeof(indel_aux_t)); indel_aux_t *iaux = bca->iaux; iaux->nsmpl = n; iaux->nplp = n_plp; iaux->plp = plp; iaux->bca = bca; iaux->ref = ref; iaux->pos = pos; iaux->chr = bca->chr; // Check if there is an indel at this position and if yes, find all indel types and determine // window boundaries. todo: We want this information cached so that for long reads we don't keep // redoing the whole analysis again and again int ntypes = iaux_init_types(iaux); if ( ntypes<=0 ) return -1; debug_print_types(iaux); // Create two template consensus sequences for each sample (assuming max diploid organism). // Then apply each indel type on top of the templates, realign every read and remember score int i,j; for (i=0; insmpl; i++) { iaux_set_consensus(iaux, i); iaux_init_scores(iaux, i); for (j=0; j 0 ? 0 : -1; }