/* The MIT License Copyright (c) 2018-2022 Genome Research Ltd. Author: Petr Danecek Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include // for isatty #include #include #include #include #include #include #include #include "bcftools.h" #include "filter.h" // Logic of the filters: include or exclude sites which match the filters? #define FLT_INCLUDE 1 #define FLT_EXCLUDE 2 typedef struct { uint32_t npass, // number of genotypes passing the filter nnon_ref, // number of non-reference genotypes nhomRR, nhomAA, nhemi, nhet, nSNV, nIndel, nmissing, nsingleton, // het different from everyone else nts, ntv; // number of transitions and transversions } stats_t; typedef struct { stats_t *stats, site_stats; filter_t *filter; char *expr; } flt_stats_t; typedef struct { int argc, filter_logic, regions_is_file, targets_is_file; int nflt_str; char *filter_str, **flt_str; char **argv, *output_fname, *fname, *regions, *targets; bcf_srs_t *sr; bcf_hdr_t *hdr; flt_stats_t *filters; int nfilters, nsmpl; int32_t *gt_arr, *ac; int mgt_arr, mac; } args_t; args_t args; const char *about(void) { return "Calculate basic per-sample stats scanning over a range of thresholds simultaneously.\n"; } static const char *usage_text(void) { return "\n" "About: Calculates basic per-sample stats. Use curly brackets to scan a range of values simultaneously\n" "Usage: bcftools +smpl-stats [Plugin Options]\n" "Plugin options:\n" " -e, --exclude EXPR exclude sites and samples for which the expression is true\n" " -i, --include EXPR include sites and samples for which the expression is true\n" " -o, --output FILE output file name [stdout]\n" " -r, --regions REG restrict to comma-separated list of regions\n" " -R, --regions-file FILE restrict to regions listed in a file\n" " -t, --targets REG similar to -r but streams rather than index-jumps\n" " -T, --targets-file FILE similar to -R but streams rather than index-jumps\n" "\n" "Example:\n" " bcftools +smpl-stats -i 'GQ>{10,20,30,40,50}' file.bcf\n" "\n"; } static void parse_filters(args_t *args) { if ( !args->filter_str ) return; int mflt = 1; args->nflt_str = 1; args->flt_str = (char**) malloc(sizeof(char*)); args->flt_str[0] = strdup(args->filter_str); while (1) { int i, expanded = 0; for (i=args->nflt_str-1; i>=0; i--) { char *exp_beg = strchr(args->flt_str[i], '{'); if ( !exp_beg ) continue; char *exp_end = strchr(exp_beg+1, '}'); if ( !exp_end ) error("Could not parse the expression: %s\n", args->filter_str); char *beg = exp_beg+1, *mid = beg; while ( midflt_str[i], exp_beg - args->flt_str[i], &tmp); kputsn(beg, mid - beg, &tmp); kputs(exp_end+1, &tmp); args->nflt_str++; hts_expand(char*, args->nflt_str, mflt, args->flt_str); args->flt_str[args->nflt_str-1] = tmp.s; beg = ++mid; } expanded = 1; free(args->flt_str[i]); memmove(&args->flt_str[i], &args->flt_str[i+1], (args->nflt_str-i-1)*sizeof(*args->flt_str)); args->nflt_str--; args->flt_str[args->nflt_str] = NULL; } if ( !expanded ) break; } fprintf(stderr,"Collecting data for %d filtering expressions\n", args->nflt_str); } static void init_data(args_t *args) { args->sr = bcf_sr_init(); if ( args->regions ) { args->sr->require_index = 1; if ( bcf_sr_set_regions(args->sr, args->regions, args->regions_is_file)<0 ) error("Failed to read the regions: %s\n",args->regions); } if ( args->targets && bcf_sr_set_targets(args->sr, args->targets, args->targets_is_file, 0)<0 ) error("Failed to read the targets: %s\n",args->targets); if ( !bcf_sr_add_reader(args->sr,args->fname) ) error("Error: %s\n", bcf_sr_strerror(args->sr->errnum)); args->hdr = bcf_sr_get_header(args->sr,0); parse_filters(args); int i; if ( !args->nflt_str ) { args->filters = (flt_stats_t*) calloc(1, sizeof(flt_stats_t)); args->nfilters = 1; args->filters[0].expr = strdup("all"); } else { args->nfilters = args->nflt_str; args->filters = (flt_stats_t*) calloc(args->nfilters, sizeof(flt_stats_t)); for (i=0; infilters; i++) { args->filters[i].filter = filter_init(args->hdr, args->flt_str[i]); args->filters[i].expr = strdup(args->flt_str[i]); // replace tab's with spaces so that the output stays parsable char *tmp = args->filters[i].expr; while ( *tmp ) { if ( *tmp=='\t' ) *tmp = ' '; tmp++; } } } args->nsmpl = bcf_hdr_nsamples(args->hdr); for (i=0; infilters; i++) args->filters[i].stats = (stats_t*) calloc(args->nsmpl,sizeof(stats_t)); } static void destroy_data(args_t *args) { int i; for (i=0; infilters; i++) { if ( args->filters[i].filter ) filter_destroy(args->filters[i].filter); free(args->filters[i].stats); free(args->filters[i].expr); } free(args->filters); for (i=0; inflt_str; i++) free(args->flt_str[i]); free(args->flt_str); bcf_sr_destroy(args->sr); free(args->ac); free(args->gt_arr); free(args); } static void report_stats(args_t *args) { int i = 0,j; FILE *fh = !args->output_fname || !strcmp("-",args->output_fname) ? stdout : fopen(args->output_fname,"w"); if ( !fh ) error("Could not open the file for writing: %s\n", args->output_fname); fprintf(fh,"# CMD line shows the command line used to generate this output\n"); fprintf(fh,"# DEF lines define expressions for all tested thresholds\n"); fprintf(fh,"# FLT* lines report numbers for every threshold and every sample:\n"); fprintf(fh,"# %d) filter id\n", ++i); fprintf(fh,"# %d) sample\n", ++i); fprintf(fh,"# %d) number of genotypes which pass the filter\n", ++i); fprintf(fh,"# %d) number of non-reference genotypes\n", ++i); fprintf(fh,"# %d) number of homozygous ref genotypes (0/0 or 0)\n", ++i); fprintf(fh,"# %d) number of homozygous alt genotypes (1/1, 2/2, etc)\n", ++i); fprintf(fh,"# %d) number of heterozygous genotypes (0/1, 1/2, etc)\n", ++i); fprintf(fh,"# %d) number of hemizygous genotypes (0, 1, etc)\n", ++i); fprintf(fh,"# %d) number of SNVs\n", ++i); fprintf(fh,"# %d) number of indels\n", ++i); fprintf(fh,"# %d) number of singletons\n", ++i); fprintf(fh,"# %d) number of missing genotypes (./., ., ./0, etc)\n", ++i); fprintf(fh,"# %d) number of transitions (alt het genotypes such as \"1/2\" are counted twice)\n", ++i); fprintf(fh,"# %d) number of transversions (alt het genotypes such as \"1/2\" are counted twice)\n", ++i); fprintf(fh,"# %d) overall ts/tv\n", ++i); i = 0; fprintf(fh,"# SITE* lines report numbers for every threshold:\n"); fprintf(fh,"# %d) filter id\n", ++i); fprintf(fh,"# %d) number of sites which pass the filter\n", ++i); fprintf(fh,"# %d) number of SNVs\n", ++i); fprintf(fh,"# %d) number of indels\n", ++i); fprintf(fh,"# %d) number of singletons\n", ++i); fprintf(fh,"# %d) number of transitions (counted at most once at multiallelic sites)\n", ++i); fprintf(fh,"# %d) number of transversions (counted at most once at multiallelic sites)\n", ++i); fprintf(fh,"# %d) overall ts/tv\n", ++i); fprintf(fh, "CMD\t%s", args->argv[0]); for (i=1; iargc; i++) fprintf(fh, " %s",args->argv[i]); fprintf(fh, "\n"); for (i=0; infilters; i++) { flt_stats_t *flt = &args->filters[i]; fprintf(fh,"DEF\tFLT%d\t%s\n", i, flt->expr); } for (i=0; infilters; i++) { flt_stats_t *flt = &args->filters[i]; for (j=0; jnsmpl; j++) { fprintf(fh,"FLT%d", i); fprintf(fh,"\t%s",args->hdr->samples[j]); stats_t *stats = &flt->stats[j]; fprintf(fh,"\t%d", stats->npass); fprintf(fh,"\t%d", stats->nnon_ref); fprintf(fh,"\t%d", stats->nhomRR); fprintf(fh,"\t%d", stats->nhomAA); fprintf(fh,"\t%d", stats->nhet); fprintf(fh,"\t%d", stats->nhemi); fprintf(fh,"\t%d", stats->nSNV); fprintf(fh,"\t%d", stats->nIndel); fprintf(fh,"\t%d", stats->nsingleton); fprintf(fh,"\t%d", stats->nmissing); fprintf(fh,"\t%d", stats->nts); fprintf(fh,"\t%d", stats->ntv); fprintf(fh,"\t%.2f", stats->ntv ? (float)stats->nts/stats->ntv : INFINITY); fprintf(fh,"\n"); } fprintf(fh,"SITE%d", i); stats_t *stats = &flt->site_stats; fprintf(fh,"\t%d", stats->npass); fprintf(fh,"\t%d", stats->nSNV); fprintf(fh,"\t%d", stats->nIndel); fprintf(fh,"\t%d", stats->nsingleton); fprintf(fh,"\t%d", stats->nts); fprintf(fh,"\t%d", stats->ntv); fprintf(fh,"\t%.2f", stats->ntv ? (float)stats->nts/stats->ntv : INFINITY); fprintf(fh,"\n"); } if ( fclose(fh)!=0 ) error("Close failed: %s\n", (!args->output_fname || !strcmp("-",args->output_fname)) ? "stdout" : args->output_fname); } static inline int parse_genotype(int32_t *arr, int ngt1, int idx, int als[2]) { int32_t *ptr = arr + ngt1 * idx; if ( bcf_gt_is_missing(ptr[0]) ) return -1; als[0] = bcf_gt_allele(ptr[0]); if ( ngt1==1 || ptr[1]==bcf_int32_vector_end ) { ptr[1] = ptr[0]; return -2; } if ( bcf_gt_is_missing(ptr[1]) ) return -1; als[1] = bcf_gt_allele(ptr[1]); return 0; } static void process_record(args_t *args, bcf1_t *rec, flt_stats_t *flt) { int i,j; uint8_t *smpl_pass = NULL; // Find out which trios pass and if the site passes if ( flt->filter ) { int pass_site = filter_test(flt->filter, rec, (const uint8_t**) &smpl_pass); if ( args->filter_logic & FLT_EXCLUDE ) { if ( pass_site ) { if ( !smpl_pass ) return; pass_site = 0; for (i=0; insmpl; i++) { if ( smpl_pass[i] ) smpl_pass[i] = 0; else { smpl_pass[i] = 1; pass_site = 1; } } if ( !pass_site ) return; } else for (i=0; insmpl; i++) smpl_pass[i] = 1; } else if ( !pass_site ) return; } // Find out the allele counts. Try to use INFO/AC, if not present, determine from the genotypes hts_expand(int, rec->n_allele, args->mac, args->ac); if ( !bcf_calc_ac(args->hdr, rec, args->ac, BCF_UN_INFO|BCF_UN_FMT) ) return; // Get the genotypes int ngt = bcf_get_genotypes(args->hdr, rec, &args->gt_arr, &args->mgt_arr); if ( ngt<0 ) return; int ngt1 = ngt / rec->n_sample; // For ts/tv: numeric code of the reference allele, -1 for insertions int ref = !rec->d.allele[0][1] ? bcf_acgt2int(*rec->d.allele[0]) : -1; int star_allele = -1; for (i=1; in_allele; i++) if ( !rec->d.allele[i][1] && rec->d.allele[i][0]=='*' ) { star_allele = i; break; } // Run the stats int site_pass = 0; int site_SNV = 0; int site_Indel = 0; int site_has_ts = 0; int site_has_tv = 0; int site_singleton = 0; for (i=0; insmpl; i++) { if ( smpl_pass && !smpl_pass[i] ) continue; stats_t *stats = &flt->stats[i]; // Determine the alternate allele and the genotypes, skip if any of the alleles is missing. int als[2]; int ret = parse_genotype(args->gt_arr, ngt1, i, als); if ( ret==-1 ) { stats->nmissing++; continue; } // missing allele if ( ret==-2 ) stats->nhemi++; else if ( als[0]!=als[1] ) stats->nhet++; else if ( als[0]==0 ) stats->nhomRR++; else stats->nhomAA++; stats->npass++; site_pass = 1; // Is there an alternate allele other than *? int has_nonref = 0; for (j=0; j<2; j++) { if ( als[j]==star_allele ) continue; if ( als[j]==0 ) continue; has_nonref = 1; } if ( !has_nonref ) continue; // only ref or * in this genotype stats->nnon_ref++; // Calculate ts/tv, count SNPs, indels. It does the right thing and handles also HetAA genotypes { int has_ts = 0, has_tv = 0, has_snv = 0, has_indel = 0; for (j=0; j<2; j++) { if ( als[j]==0 || als[j]==star_allele ) continue; if ( als[j] >= rec->n_allele ) error("The GT index is out of range at %s:%"PRId64" in %s\n", bcf_seqname(args->hdr,rec),(int64_t) rec->pos+1,args->hdr->samples[j]); if ( args->ac[als[j]]==1 ) { stats->nsingleton++; site_singleton = 1; } int var_type = bcf_has_variant_type(rec, als[j], VCF_SNP|VCF_MNP|VCF_INDEL); if ( var_type < 0 ) error("bcf_has_variant_type() failed"); if ( var_type & (VCF_SNP|VCF_MNP) ) { int k = 0; while ( rec->d.allele[0][k] && rec->d.allele[als[j]][k] ) { if ( rec->d.allele[0][k]==rec->d.allele[als[j]][k] ) { k++; continue; } int alt = bcf_acgt2int(rec->d.allele[als[j]][k]); if ( abs(ref-alt)==2 ) has_ts = 1; else has_tv = 1; has_snv = 1; k++; } } else if ( var_type == VCF_INDEL ) has_indel = 1; } if ( has_ts ) { stats->nts++; site_has_ts = 1; } if ( has_tv ) { stats->ntv++; site_has_tv = 1; } if ( has_snv ) { stats->nSNV++; site_SNV = 1; } if ( has_indel ) { stats->nIndel++; site_Indel = 1; } } } flt->site_stats.npass += site_pass; flt->site_stats.nSNV += site_SNV; flt->site_stats.nIndel += site_Indel; flt->site_stats.nts += site_has_ts; flt->site_stats.ntv += site_has_tv; flt->site_stats.nsingleton += site_singleton; } int run(int argc, char **argv) { args_t *args = (args_t*) calloc(1,sizeof(args_t)); args->argc = argc; args->argv = argv; args->output_fname = "-"; static struct option loptions[] = { {"include",required_argument,0,'i'}, {"exclude",required_argument,0,'e'}, {"output",required_argument,NULL,'o'}, {"regions",1,0,'r'}, {"regions-file",1,0,'R'}, {"targets",1,0,'t'}, {"targets-file",1,0,'T'}, {NULL,0,NULL,0} }; int c, i; while ((c = getopt_long(argc, argv, "o:s:i:e:r:R:t:T:",loptions,NULL)) >= 0) { switch (c) { case 'e': if ( args->filter_str ) error("Error: only one -i or -e expression can be given, and they cannot be combined\n"); args->filter_str = optarg; args->filter_logic |= FLT_EXCLUDE; break; case 'i': if ( args->filter_str ) error("Error: only one -i or -e expression can be given, and they cannot be combined\n"); args->filter_str = optarg; args->filter_logic |= FLT_INCLUDE; break; case 't': args->targets = optarg; break; case 'T': args->targets = optarg; args->targets_is_file = 1; break; case 'r': args->regions = optarg; break; case 'R': args->regions = optarg; args->regions_is_file = 1; break; case 'o': args->output_fname = optarg; break; case 'h': case '?': default: error("%s", usage_text()); break; } } if ( optind==argc ) { if ( !isatty(fileno((FILE *)stdin)) ) args->fname = "-"; // reading from stdin else { error("%s",usage_text()); } } else if ( optind+1!=argc ) error("%s",usage_text()); else args->fname = argv[optind]; init_data(args); while ( bcf_sr_next_line(args->sr) ) { bcf1_t *rec = bcf_sr_get_line(args->sr,0); for (i=0; infilters; i++) process_record(args, rec, &args->filters[i]); } report_stats(args); destroy_data(args); return 0; }